47 research outputs found

    The Private Key Capacity of a Cooperative Pairwise-Independent Network

    Full text link
    This paper studies the private key generation of a cooperative pairwise-independent network (PIN) with M+2 terminals (Alice, Bob and M relays), M >= 2. In this PIN, the correlated sources observed by every pair of terminals are independent of those sources observed by any other pair of terminal. All the terminals can communicate with each other over a public channel which is also observed by Eve noiselessly. The objective is to generate a private key between Alice and Bob under the help of the M relays; such a private key needs to be protected not only from Eve but also from individual relays simultaneously. The private key capacity of this PIN model is established, whose lower bound is obtained by proposing a novel random binning (RB) based key generation algorithm, and the upper bound is obtained based on the construction of M enhanced source models. The two bounds are shown to be exactly the same. Then, we consider a cooperative wireless network and use the estimates of fading channels to generate private keys. It has been shown that the proposed RB-based algorithm can achieve a multiplexing gain M-1, an improvement in comparison with the existing XOR- based algorithm whose achievable multiplexing gain is about [M]/2.Comment: 5 pages, 3 figures, IEEE ISIT 2015 (to appear

    A Novel Network NOMA Scheme for Downlink Coordinated Three-Point Systems

    Full text link
    In this paper, we propose a network non-orthogonal multiple access (N-NOMA) technique for the downlink coordinated multipoint (CoMP) communication scenario of a cellular network, with randomly deployed users. In the considered N-NOMA scheme, superposition coding (SC) is employed to serve cell-edge users as well as users close to base stations (BSs) simultaneously, and distributed analog beamforming by the BSs to meet the cell-edge user's quality of service (QoS) requirements. The combination of SC and distributed analog beamforming significantly complicates the expressions for the signal-to-interference-plus-noise ratio (SINR) at the reveiver, which makes the performance analysis particularly challenging. However, by using rational approximations, insightful analytical results are obtained in order to characterize the outage performance of the considered N-NOMA scheme. Computer simulation results are provided to show the superior performance of the proposed scheme as well as to demonstrate the accuracy of the analytical results

    Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink

    Get PDF
    In this letter, based on the non-orthogonal multiple access (NOMA) concept, a quality-of-service optimization problem for two-user multiple-input-single-output broadcast systems is considered, given a pair of target interference levels. The minimal power and the optimal precoding vectors are obtained by considering its Lagrange dual problem and via Newton's iterative algorithm, respectively. Moreover, the closed-form expressions of the minimal transmission power for some special cases are also derived. One of these cases is termed quasi-degraded, which is the key point and will be discussed in detail in this letter. Our analysis further figures out that the proposed NOMA scheme can approach nearly the same performance as optimal dirty paper coding, as verified by computer simulations

    An Optimization Perspective of the Superiority of NOMA Compared to Conventional OMA

    Get PDF
    While existing works about non-orthogonal multiple access (NOMA) have indicated that NOMA can yield a significant performance gain over orthogonal multiple access (OMA) with fixed resource allocation, it is not clear whether such a performance gain will diminish when optimal resource (Time/Frequency/Power) allocation is carried out. In this paper, the performance comparison between NOMA and conventional OMA systems is investigated, from an optimization point of view. Firstly, by using the idea of power splitting, a closed-form expression for the optimum sum rate of NOMA systems is derived. Then, with rigorous mathematical proofs, we reveal the fact that NOMA can always outperform conventional OMA systems, even if both are equipped with the optimal resource allocation policies. Finally, computer simulations are conducted to validate the accuracy of the analytical results.Comment: 28 pages, 8 figures, submitted to IEEE Transactions on Signal Processin
    corecore